AI Consulting Services
for Financial Advisors
Scroll down arrow

Integrating artificial intelligence into your financial advisory practice can significantly enhance your services and boost your growth. However, successful AI implementation relies heavily on your AI consultant's understanding of your business.


Tailored AI Solutions

Each financial advisory practice has unique challenges, goals, and requirements. An AI consultant who deeply understands your business can identify areas where AI can add the most value and recommend tailored solutions that align with your objectives.

Seamless Integration

Integrating AI into your existing systems and processes can be complex. A consultant who understands your business can ensure that the recommended AI tools are compatible with your current infrastructure, minimizing disruption and maximizing efficiency.

Regulatory Compliance

The financial industry is highly regulated.  Implementing AI solutions requires a thorough understanding of the relevant rules and regulations. A knowledgeable AI consultant can help you navigate the complex regulatory landscape.

Enhanced Client Experience

An AI consultant who understands your client base and the services you provide can help you implement AI solutions that enhance your clients' experience.

Optimal ROI

A consultant who understands your business can help you choose the most cost-effective AI tools and platforms, optimizing your return on investment.

Future-Proofing Your Practice

An AI consultant with industry knowledge can help you stay ahead of the curve. By understanding the trends and emerging technologies in the financial advisory sector, your consultant can guide you toward AI solutions that will keep your practice competitive and innovative in the long term.

At  Evidence Based Advisor Marketing, our team of experts combines AI know-how with a deep understanding of the financial advisory landscape to deliver tailored solutions that drive growth and enhance your services.
Basics of AI

Artificial intelligence is a branch of computer science focusing on developing machines and algorithms capable of simulating human-like intelligence, learning, and problem-solving. Integrating AI into your financial advisory practice allows you to stay ahead of the curve in a rapidly evolving industry.

Overview of AI

AI can be divided into two main categories: Narrow AI and General AI.

Narrow AI

Narrow AI is designed to perform specific tasks with expertise. It is the most common form of AI in the financial industry, powering applications like robo-advisors, chatbots, and predictive analytics tools.

General AI

General AI refers to machines that possess human-like cognitive abilities, enabling them to understand, learn, and adapt across a wide range of tasks. Although General AI remains a long-term goal in AI research, its potential applications are vast and could reshape the financial industry.

Basic AI Terms

Here are definitions and explanations for fundamental AI-related terms and concepts to help you better understand the technical aspects of artificial intelligence.


A set of rules or procedures computers use to solve problems or perform specific tasks. In AI, algorithms enable machines to learn and make decisions based on data inputs.

Machine Learning (ML)

A subset of AI that focuses on developing algorithms that enable computers to learn and adapt from data without explicit programming. ML systems improve their performance as they are exposed to more data over time.

Deep Learning

A subfield of machine learning that uses artificial neural networks to model complex patterns in data. Deep learning algorithms can learn and process high-dimensional data, like images, speech, and text, making them particularly useful in natural language processing and computer vision.

Artificial Neural Networks (ANN)

Computational models inspired by the structure and function of biological neural networks. ANNs consist of interconnected nodes (neurons) that process and transmit information, enabling machines to learn and make decisions.

Supervised Learning

A type of machine learning where algorithms learn from labeled data, using input-output pairs to predict future outcomes. The known output guides the learning process, allowing the model to refine its predictions over time.

Unsupervised Learning

A type of machine learning where algorithms learn from unlabeled data, identifying patterns and relationships within the data without prior knowledge of the desired output.

Reinforcement Learning

A type of machine learning where algorithms learn through trial and error, receiving feedback as rewards or penalties. This feedback helps the algorithm optimize its decisions to achieve a specific goal.

Natural Language Processing (NLP)

A subfield of AI that focuses on enabling computers to understand, interpret, and generate human language. NLP algorithms can analyze text and speech, allowing machines to engage in human-like communication.

Computer Vision

A subfield of AI that develops algorithms and techniques that enable computers to interpret and analyze visual information, like images and videos.

Data Mining

The process of extracting valuable insights and patterns from large datasets using machine learning, statistical analysis, and database management techniques.

Supervised LearningRobotic Process Automation (RPA)

The application of AI and machine learning to automate repetitive and rule-based tasks, reducing human intervention and increasing efficiency.

AI Ethics

The study and application of ethical principles to the development and use of AI technology, addressing issues like bias, fairness, transparency, and accountability.

AI Myths

Despite the growing popularity and widespread adoption of artificial intelligence, common myths persist that can lead to misunderstandings about its capabilities and limitations.

AI is synonymous with robots

While robots can be equipped with AI to perform specific tasks or make decisions, AI is not limited to robotics.

AI encompasses many algorithms, techniques, and applications beyond robotics, including natural language processing, computer vision, and machine learning.

AI can replace human advisors

AI has the potential to automate specific tasks and augment human decision-making, but it is not a replacement for human expertise.

AI is infallible

AI systems are designed to learn from data. The quality of the data directly impacts performance.

If the data used to train an AI system is biased or incomplete, the system may produce inaccurate or biased results. It is crucial to use high-quality, diverse data sources and continuous monitoring to ensure AI systems perform as intended.

AI can understand and interpret emotions

While AI systems can recognize patterns in data, they do not possess emotions or consciousness. AI-driven sentiment analysis tools can analyze text or speech to infer emotional states, but they are based on pattern recognition rather than genuine emotional understanding.

AI can fully replicate human intelligence

General AI, or artificial general intelligence (AGI), refers to machines with human-like cognitive abilities across various tasks. However, AGI remains a long-term goal in AI research and has yet to be achieved.

Current AI systems, classified as narrow AI, are designed to perform specific tasks with expertise but lack the broad cognitive capabilities of humans.

Implementing AI is expensive

The cost of implementing AI can vary depending on the complexity of the solution and the specific needs of your practice.

Many AI tools and platforms are available at different price points, making it possible for financial advisors with a range of budgets to benefit from AI integration.

Reasons to Adopt AI

Regardless of the size of your practice, AI integration may add efficiency, turbocharge your marketing and permit you to serve your clients better.

Here’s a summary of the potential benefits of AI.

Increased Efficiency

AI-driven automation reduces the time and effort required for routine tasks, like data entry, portfolio rebalancing, and report generation, allowing you to focus on providing value-added services to your clients.

Enhanced Decision-Making

AI-powered predictive analytics and risk assessment tools can process vast amounts of data in real-time, enabling you to make informed decisions that align with your client's financial goals.

Personalized Client Experiences

AI can analyze clients' financial data and preferences to deliver highly customized investment advice, improving client satisfaction and fostering long-term relationships.

Improve Client Communication

AI-powered chatbots like Cleo or Kasisto's KAI  provide instant and accurate responses to your client's queries, improving their overall experience.

Competitive Edge

As the financial industry embraces AI, incorporating AI technology into your practice is essential to stay relevant and competitive. Early adoption of AI will position your practice as an industry leader and drive growth.


AI allows you to scale your practice efficiently because the technology can handle increasing tasks and clients without requiring additional human resources.

Automate Compliance and Reporting

Implement AI-based compliance and reporting solutions like Ascent to minimize errors, streamline regulatory adherence, and save valuable time.

Boost Lead Generation

Employ AI-driven marketing tools like Conversica or to engage and qualify leads, increase your conversion rate, and expand your client base.

Our Process

Our AI consulting services are designed to help financial advisors navigate the complex world of AI integration. We focus on the following:

Assessing Your Needs

We begin by thoroughly analyzing your existing systems and identifying areas where AI can add the most value.

Selecting the Right Tools

Based on your unique requirements, we recommend the best AI applications and platforms suited for your practice. Examples include robo-advisory platforms like Betterment and Wealthfront and AI-powered financial planning tools like RightCapital and Advizr.

Implementation and Training

We assist you in implementing the chosen AI solutions and provide comprehensive training to ensure you and your team can leverage these tools effectively.

Ongoing Support

Our support continues after implementation. We provide continuous assistance to help you adapt and scale your AI-driven practice.

Our Team of Independent AI Experts

Our independent AI experts have vast experience implementing AI solutions for businesses of all sizes.

Jillyn Johnson

Analyze and infuse AI into existing business processes to improve the workflow, user experience and accelerate revenue growth.

Summary of my AI experience

I’ve been immersed in the AI Marketing Institute for nearly a year, monitoring and trialing various generative AI tools as they launch.  The vast applications for use vary from simple workflow use to complex platform integrations.  I have been working on a complex integration in the medical space and have consulted with some of the leading AI minds through online communities to identify what is short term vs. long-term applications of AI tools.  It’s important to mention my commitment to the responsible use of AI and the ethical responsibility that comes with utilization of it as well.

Consulting for Financial Advisors

With more than a decade of experience as a consultant for technical marketing across Fortune 500, telecom, tech, private medical and government, I have developed my professional and systems integration skills to craft client-facing solutions.  I developed strong business analysis skills and honed my financial acumen through executive forecasting, formal education and P&L management.

The financial industry, rich with data for trend analysis, forecasting, and prediction, is ripe for optimization through process efficiency.  Today we are working toward human amplification, not human replacement. I am experienced and working with basic model training, well versed in generative AI as well as visual reporting and anomaly identification.  I am confident we can map the an advisor's current processes, identify redundant and time-consuming tasks and replace them with automated new flows to reduce costs, increase revenues or simply give employees more job fulfillment. Every day new ROI can be seized if we’re willing to look beyond the standard ways of working.

Read More

Scott W. McQuiggan, Ph.D.

I am an experienced executive in startups from zero to Series A looking for a fulfilling strategy and product development role to help drive a mission-driven organization.

Summary of my AI experience

My 20+ years in AI began researching machine learning techniques to generate models of student emotion and behavior in advanced learning environments to adapt personalize learning while obtaining my Ph.D. at North Carolina State University. Additional applications of AI I worked on in education include optimization modeling for student school assignments and bus routes, language modeling to advance revision writing, and predicting student reading achievement. Most recently, I worked on AI implementations in healthcare to enhance patient experience and engagement in digital health settings.

I love to explore novel applications of AI and how the explosion of AI tools can help professionals optimize problem-solving at scale.

How I think I can benefit financial advisors

Generative AI, which involves using machine learning models to generate new content or data, can benefit financial advisors in several ways:

1. Personalization: Generative AI can help financial advisors generate personalized investment advice based on client's unique needs and preferences. For example, AI can analyze a client's risk tolerance, investment goals, and other factors to suggest customized investment strategies.

2. Automation: Generative AI can help financial advisors automate routine tasks such as report generation, data analysis, and other administrative tasks. This can help advisors save time and focus on more value-added activities, like building client relationships and developing investment strategies.

Read More

Derek Loyer

A leader with an entrepreneurial style able to identify areas for growth and improvement using a data-driven approach to provide innovative solutions.

Summary of my AI experience

I am an AI expert with a background in electrical engineering, computer science, and entrepreneurship. I’ve built and managed startups as well as global teams in the software, semiconductor, automotive, and management consulting industries. I have a proven track record of working with teams to develop strategies, become more data-driven, implement Agile processes, and deploy the right technology to achieve objectives and goals.

I love strategic problem-solving to help clients achieve asymmetric results.

How I think I can benefit financial advisors

May background running marketing organizations combined with my data-driven approach helps financial services teams achieve their growth goals. The unique requirements of wealth management firms demand partners that understand those needs and can deploy the right tools that lead to results.

Read More